Kamis, 30 Desember 2010

Photosynthetic Pigments

APA ITU K-LIQUID CHLOROPHYLL?K-Liquid Chlorophyll adalah minuman kesehatan (Herbal Drink) yang bahan utamanya adalah sari klorofil dari daun Alfalfa (Medicago sativa), suatu herbal bernilai nutrisi tinggi.KOMPOSISI:Sari Daun Alfalfa yang mengandung : Sodium, Copper, Chlorophyllin, Vit A, B-Complex, C, E, Calsium, Magnesium, Pospor, Asam Amino, Alpha & Beta Carotine + UIE (Universe Induce Energy).MANFAAT/KEGUNAAN:Sebagai Anti Oxidant, baik untuk kesehatan mata, paru-paru, lambung, pencernaan dll.Satu sendok makan K-Liquid Chlorophyll sama dengan 1 Kg sayur.Memperlancar dan membersihkan darah dari segala bentuk racun dan zat kimia dalam tubuh.Berfungsi sebagai anti kanker.Menjaga keseimbangan Hormon dan keasaman dalam tubuh.Menghalangi pertumbuhan bakteri dan mempercepat penyembuhan luka.Meningkatkan daya serap nutrisi dan energi.FUNGSI UTAMA K-LIQUID CHLOROPHYLL:CleansingMembersihkan sistem pencernaan, membersihkan darah, membunuh bakteri, mencegah infeksi dan detoksifikasi.BalancingMenyeimbangkan kadar asam dan Alkali di dalam tubuh.NourishingMeregenerasi sel darah merah dan menstimulasi regenerasi sel.PETUNJUK PEMAKAIAN:Larutkan 1 (satu) sloki/sendok makan dalam segelas air putih.Untuk anak-anak dibawah umur 12 tahun cukup larutkan 1/2 (setengah) sloki atau 1 (satu) sendok teh K-Liquid Chlorophyll.Minum 3 (tiga) gelas sehari.(sebelum makan/perut kosong).KEMASAN:1 botol isi 500ml Ekstrak Chlorophyll.UNTUK BELANJA ONLINE KLIK www.binmuhsingroup. UNTUK PEMESANAN HUBUNGI :HP: 085227044550 Tlp: 021-91913103 SMS ONLY: 081213143797@MyYM @MyFacebook @MyTwitter @MyYuwie @MyFriendsterbinmuhsin_group@yahoo.co.id

Pigments are colorful compounds.

Pigments are chemical compounds which reflect only certain wavelengths of visible light. This makes them appear "colorful". Flowers, corals, and even animal skin contain pigments which give them their colors. More important than their reflection of light is the ability of pigments to absorb certain wavelengths.

Because they interact with light to absorb only certain wavelengths, pigments are useful to plants and other autotrophs --organisms which make their own food using photosynthesis. In plants, algae, and cyanobacteria, pigments are the means by which the energy of sunlight is captured for photosynthesis. However, since each pigment reacts with only a narrow range of the spectrum, there is usually a need to produce several kinds of pigments, each of a different color, to capture more of the sun's energy.

There are three basic classes of pigments.

  • Chlorophylls are greenish pigments which contain a porphyrin ring. This is a stable ring-shaped molecule around which electrons are free to migrate. Because the electrons move freely, the ring has the potential to gain or lose electrons easily, and thus the potential to provide energized electrons to other molecules. This is the fundamental process by which chlorophyll "captures" the energy of sunlight.

    There are several kinds of chlorophyll, the most important being chlorophyll "a". This is the molecule which makes photosynthesis possible, by passing its energized electrons on to molecules which will manufacture sugars. All plants, algae, and cyanobacteria which photosynthesize contain chlorophyll "a". A second kind of chlorophyll is chlorophyll "b", which occurs only in "green algae" and in the plants. A third form of chlorophyll which is common is (not surprisingly) called chlorophyll "c", and is found only in the photosynthetic members of the Chromista as well as the dinoflagellates. The differences between the chlorophylls of these major groups was one of the first clues that they were not as closely related as previously thought.

  • Carotenoids are usually red, orange, or yellow pigments, and include the familiar compound carotene, which gives carrots their color. These compounds are composed of two small six-carbon rings connected by a "chain" of carbon atoms. As a result, they do not dissolve in water, and must be attached to membranes within the cell. Carotenoids cannot transfer sunlight energy directly to the photosynthetic pathway, but must pass their absorbed energy to chlorophyll. For this reason, they are called accessory pigments. One very visible accessory pigment is fucoxanthin the brown pigment which colors kelps and other brown algae as well as thediatoms.

  • Phycobilins are water-soluble pigments, and are therefore found in the cytoplasm, or in the stroma of the chloroplast. They occur only in Cyanobacteria andRhodophyta.

    The picture at the right shows the two classes of phycobilins which may be extracted from these "algae". The vial on the left contains the bluish pigment phycocyanin, which gives the Cyanobacteria their name. The vial on the right contains the reddish pigment phycoerythrin, which gives the red algae their common name.

    Phycobilins are not only useful to the organisms which use them for soaking up light energy; they have also found use as research tools. Both pycocyanin and phycoerythrin fluoresce at a particular wavelength. That is, when they are exposed to strong light, they absorb the light energy, and release it by emitting light of a very narrow range of wavelengths. The light produced by this fluorescence is so distinctive and reliable, that phycobilins may be used as chemical "tags". The pigments are chemically bonded to antibodies, which are then put into a solution of cells. When the solution is sprayed as a stream of fine droplets past a laser and computer sensor, a machine can identify whether the cells in the droplets have been "tagged" by the antibodies. This has found extensive use in cancer research, for "tagging" tumor cells.

    sumber : http://www.ucmp.berkeley.edu/glossary/gloss3/pigments.html

  • Tidak ada komentar:

    Posting Komentar